

IEEE 1547.4 Guideline for Intentional Islanding of Distributed Generation and BC Hydro's Planned Islanding Experience

Chad Abbey¹

Susan Tang²

1 – Natural Resources Canada - CETC-Varennes 2 – BC Hydro

Natural Resources Ressources naturelles Canada Canada

Overview

- Canadian microgrid research
- IEEE 1547.4
 - History
 - Document overview
 - Technical issues
- BC Hydro planned islanding
 - Islanding strategy
 - Boston Bar case study
- Summary

Canad a

Ressources naturelles Natural Resources Canada

General

History

- IEEE 1547.x series IEEE 1547.4
- Meetings: biannual meetings since August 2004.
- Structure of document defined
- Content is being integrated
- Next Meeting
 - Aug. 2006 Las Vegas
- Project end date
 - Guide scheduled to be balloted and approved by December 2007
- Chair: Ben Kroposki, National Renewable Energy Laboratory (NREL)

*

Natural Resources Ressources naturelles Canada Canada

Document content

- 1) Overview
- 2) References
- 3) Definitions and Acronyms
- 4) Electrical System Characteristics
- 5) Functionality of the DR Island System
- 6) Design and Integration of DR Island Systems
- 7) Operation and Management of DR Island Systems
- Appendices
 - Bibliography
 - Case studies
 - Short circuit calculations

Vatural Resources Ressources naturelles Canada Canada

DR island functionality

- EPS connected mode (normal parallel operation)
- Transition mode
- Island mode
 - Load and generation management
 - Voltage and frequency control
 - DR control
 - Stability steady-state dynamic stability
 - Protection issues coordination, out-of phase reclosing, configuration
 - Cold load pickup
 - Monitoring and communication
- Reconnection mode

*

Natural Resources Ressources naturelles Canada Canada

Design and integration

- Types
- **Engineering considerations**
- EPS planning
 - Studies compatibility, load flow, short circuit studies
 - Operating practices
 - Interferance of parallel operation settings anti-islanding, under / over frequency and voltage

Canada

Operation and Management

- Power dispatch
 - Central dispatch control
 - Distributed dispatch
- Communication and information exchange
- Real time operation considerations
- Time length of operation

DR islands

Design process

Natural ResourcesRessources naturellesCanadaCanada

BC Hydro – planned islanding

Reliability concern

- D customer reliability was below customer expectations
- If a power generator (PG) islands BCH loads on same or nearby feeder – reliability improvement
 - Transmission supply is unsecure single radial supply
 - Feeder is long and subject to frequent outages trees, storms, motor vehicles
- Islanding study
 - Inadvertent islanding & planned islanding of BCH customer load
 - the island is all or part of a distribution feeder
 - the island excludes the distribution substation LV bus and the substation transmission supply

Vatural Resources Ressources naturelles Canada Canada

- Existing PG Interconnection Requirements
 - Review existing BCH PG Interconnection Requirements for treatment of inadvertent islanding
- System Reliability
 - Determine criteria for reliability impact under inadvertent islanding, planned islanding, future planned islanding
- Power Quality
 - Define PQ considerations for frequency & V variations, low fault levels, harmonics, etc
- BC Hydro System Requirements
 - Define requirements on BCH side for PG planned islanding, e.g. telecom, P&C, with incremental costs

Vatural Resources Ressources naturelles Canada Canada

- Power Generator System Requirements
 - prime mover & generator
 - exciter, governor & AVR
 - generator lag/lead power factor rating
 - Ioad follow capability
 - protection & coordination requirements
 - black start capability
 - Commissioning tests for V & frequency performance in grid connect, island and dead-load pickup
 - costs for added requirements

Natural Resources Ressources naturelles Canada Canada

- Operation and Safety
 - Define Area Control Centre & line crew requirements for islanding operation, e.g.
 - Added PG monitoring at Area Control Centre
 - Line crew training
 - Local Operating Order
 - Safety issues for line crews, tree trimmers & substation personnel

Canada

Commercial

- Define commercial terms/conditions & economic principles for PG planned islanding
- Economic Analysis of Investment Alternatives
 - Perform cost comparisons on 3 cases:
 - short outage on urban distribution feeder
 - short outage on rural distribution feeder
 - long outage on rural distribution feeder

Case study - Boston Bar Hydro

Run-of-river hydro - April 1995

- 200 km NE of Vancouver
- 25 kV feeder
- 3.0 MVA peak load
- Generators:
 - 2 x 3.45 MW (8.6 MVA)
 - 4.16 kV
 - IPP remote operator
- Agreement with IPP
 - \$44/MWh in 1995
 - Bonus for islanding

Natural Resources Ressources naturelles Canada Canada

System configuration

Lessons learned

- PGs of interest for feeder planned islanding are likely:
 - rated 3-10 MVA
 - new sites
 - MVA rated > 2x peak load to hold load on opening of substn feeder CB & for dead-load pickup IPP
- Retrofitting IPPs not likely economic
- Spending \$ to rehabilitate an existing IPP during a BCH supply emergency is fruitless
 - (Valemount 138 kV line burned down in Aug 2003)
- Incremental capital cost
 - Expected to be small for quality designs & quality equipment

Natural Resources Ressources naturelles Canada Canada

Moderate Complex Simple

Canad a

Natural Resources Ressources naturelles Canada

Summary

Microgrids

- Technically feasible however must be industry friendly
- Structured process is required to move beyond pilot projects
- Application guide
 - Powerful tool
 - Formalize the design process
- BC Hydro
 - Canadian leader in planned islanding
 - Initiative in analysis of islanding
 - Technical assessment vs. business case

