

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" Campus de Ilha Solteira

Departamento de Engenharia Elétrica

Home | Portal UNESP

MICROGRIDS IN BRAZIL

JEJU 2011 SYMPOSIUM ON MICROGRIDS

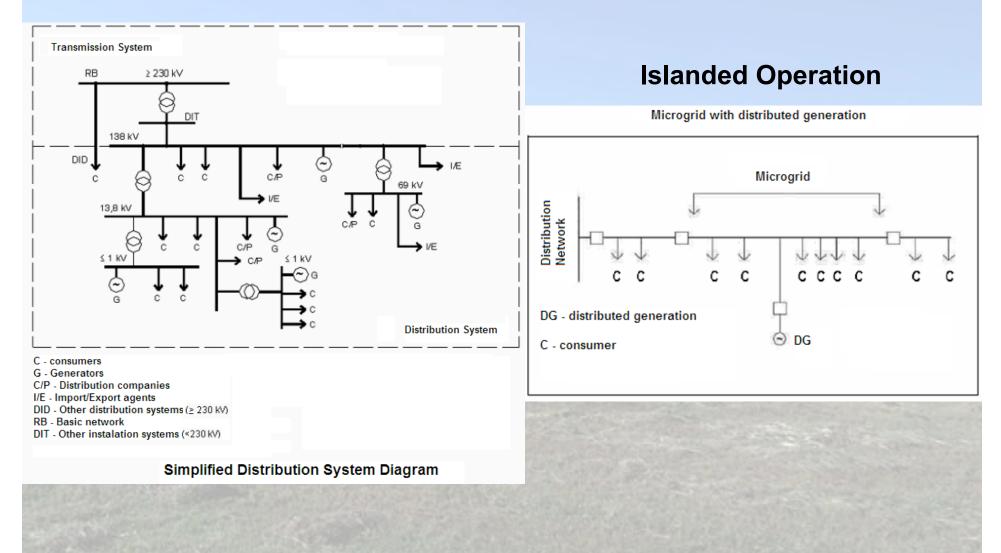
Seogwipo KAL Hotel, Jeju Island, Korea Thursday & Friday, 26 & 27 May 2011

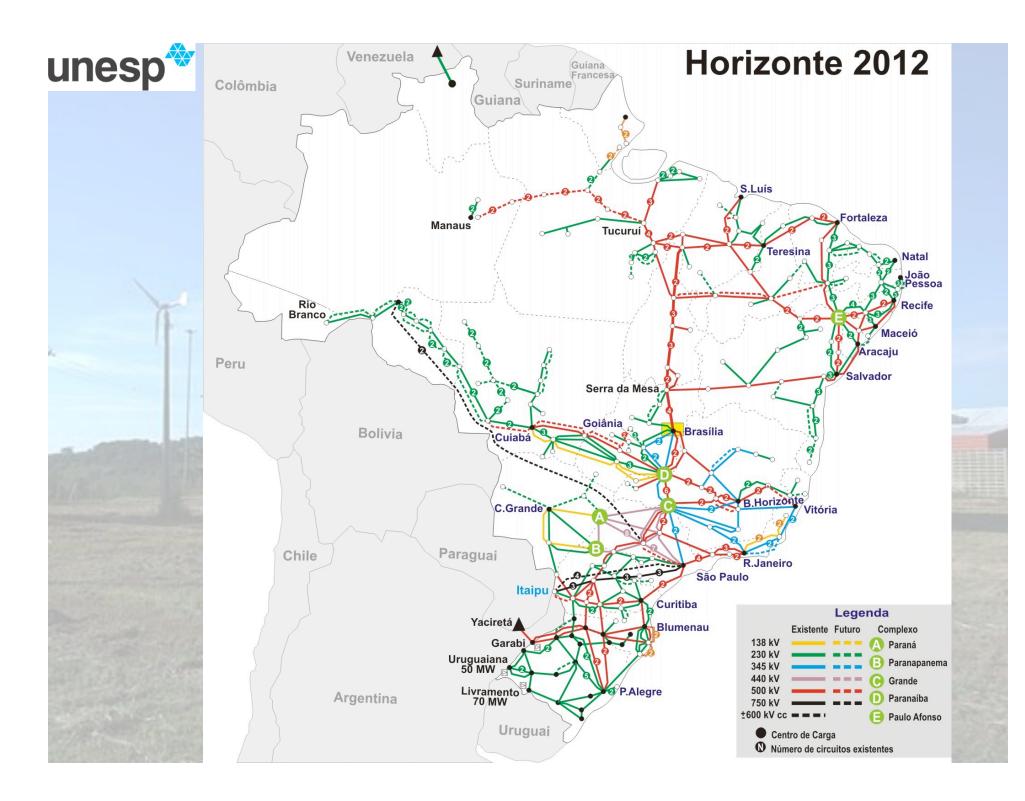
Objects of Interest

- Islanded distributed generation operation
- Isolated Micro and Mini systems
- Individual Electricity Generation Systems with Intermittent Sources

Regulatory Environment

Brazilian Electricity Regulatory Agency – ANEEL

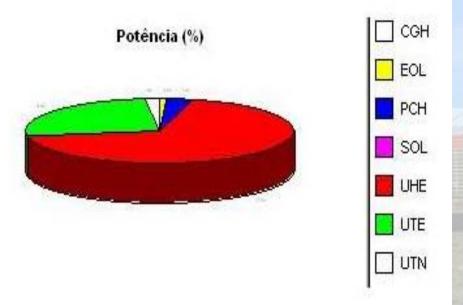

ANEEL PRODIST (Procedures for Distribution) MODULE 3 – Distribution System Access (Distributed Generation)


NORMATIVE RESOLUTION N°83, Sept. 20th, 2004: Defines operational procedures for Individual Electricity Generation Systems with Intermittent Sources (SIGFI)

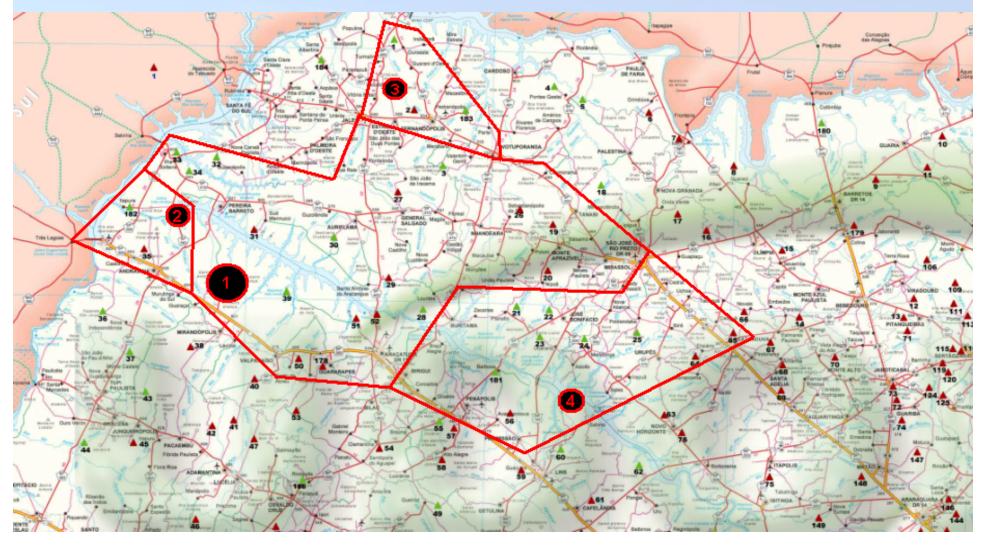
NORMATIVE RESOLUTION DRAFT: Isolated Electricity Generation and Distribution Mini-System (MIGDI)

unesp* ANEEL PRODIST – Module 3

(reviewed in 08/11/2007)

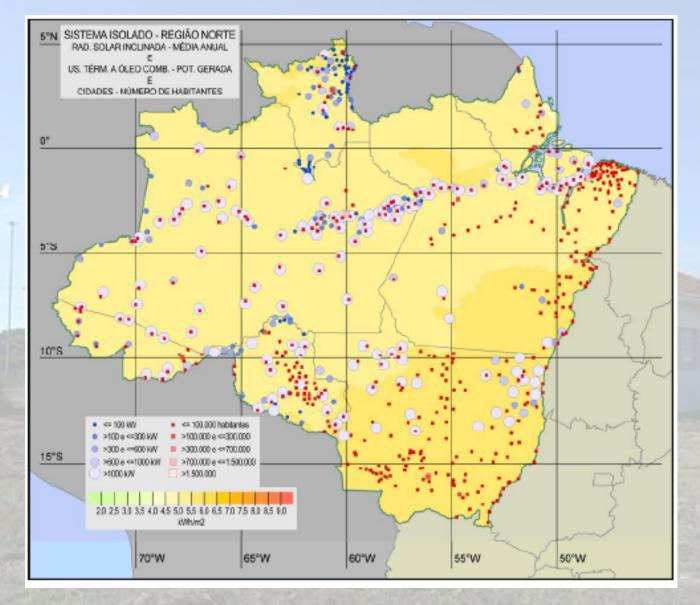


Brazilian Generation Matrix (source ANEEL)


Empreendimentos em Operação						
Tipo	Quantidade	Potência Outorgada (kW)	Potência Fiscalizada (kW)	%		
CGH	334	191.146	188.701	0,17		
EOL	49	936.332	928.536	0,81		
PCH	398	3.586.951	3.537.132	3,10		
SOL	5	87	87	0		
UHE	176	78.926.687	77.426.314	67,75		
UTE	1.436	32.363.567	30.192.756	26,42		
UTN		2.007.000				
Total	2.400	118.011.770	114.280.526	100		

Islanding Systems

Potential Biomass Thermoelectric Generation in São Paulo State (distributed generation)


Isolated Mini-systems

Diesel thermoelectric Installed in the Amazon Region

State	Installed power	Diesel Thermoelectric Unities	< 1 MVA Diesel Thermoelectric
Acre	29,224	16	9
Rondonia	96,795	56	43
Amazonas	149,824	86	32
Pará	89,691	46	28
Amapá	15,655	7	5
Roraima	12,031	69	67
Total	393,220	280	184

Source: RÜTHER, R.; MONTENEGRO, A.A.. Design and Preliminary Performance Results of the First Hybrid Diesel / Photovoltaic System Without Storage for Isolated Mini-Grids in the Brazilian Amazon Region. Proceedings of ISES 2001 Solar World Congress, v. 1. p. 11-20, 2001, Adelaide - Australia.

Source: Prof Ricardo Rüther, UFSC

NORMATIVE RESOLUTION N°83 (20/09/2004)

•"Luz para todos" Program ("Light for All" Program- universal access to electricity). Goal: 5 millions of Brazilian consumers until 2010

 Individual Electricity Generation Systems with Intermittent Sources (SIGFI) – generation for single consumer unity

•Alternating current feeding (local consumer nominal voltage)

Up to 50 kW: investment comes from Electric Utilities

•For energy < 30khW month: charge of about R\$ 3.00 (US \$ 1.86)

•Electric Utility is responsible for equipment and circuit safety and security (including insurance)

General technical description for SIGFI

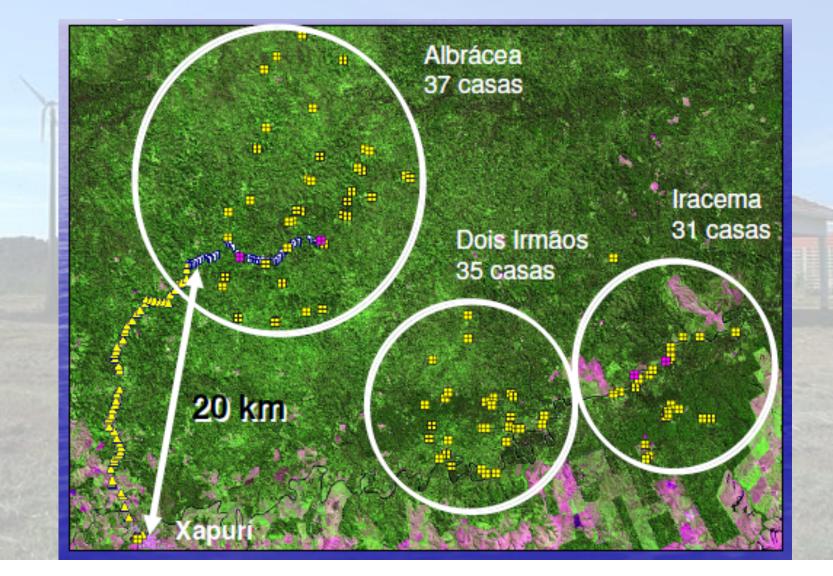
Service class	Dail Dema Refere (Wh/d	and auto ence (c	nimum onomy lays)	Minimum Available Power* (W)	Monthly Energy Availability (kWh)
SIGFI13	3 43	5	2	250	13
SIGFI30) 100	0	2	500	30
SIGFI45	5 150	0	2	700	45
SIGFI60	200	0	2	1000	60
SIGF180	266	6	2	1250	80

*Local nominal voltage

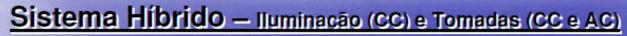
SIGFI Quality Standards

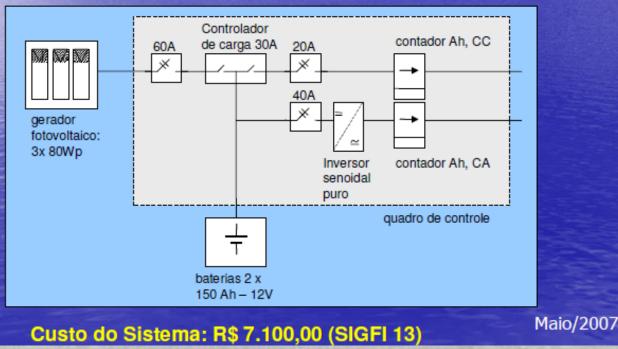
Indicator	Reference Standard (hour)	
Monthly DIC*	216 = 9 days	
Annual DIC*	648 = 27 days	

*DIC – Interruption Period per Consumer Unity


Coelba Experience (Bahia Electricity Company)

- 10,133 installed photovoltaic systems
- Free installation
- Consumer pays for 13 kWh monthly (US\$ 1.86)
- More than 75% satisfied costumers
- Batteries replacement each 4 year (displacement managed by the Company)


Projeto Xapuri Chico Mendes Reserve


(Source:CLÁUDIO MONTEIRO (Eletrobras), DENNYS SENNA (Eletroacre), NADMA KUNRATH (Acre Government), TORSTEN SCHWAB (GIZ) -2° Seminário Monitoramento MME-Eletroacre – May/2007)

- 3 X 80Wp photovoltaic modules; 2 X 150Ah/12Vcc stationary batteries
- 1 X 30A charge controller
- 1 X 300W inverter
- 1 X Install kit

Comunidade São Francisco do Aiucá – AM

(souce: Roberto Zilles, USP)

- Mamirauá Sustainable Reserve Community
- By river only access
- 160 residents e 25 homes
- Straight family relarionship
- Resident's association
- 1 teacher and 1 doctor
- Life depends on river cicles

O ATENDIMENTO ELÉTRICO ISOLADO DO SISTEMA DE DISTRIBUIÇÃO: SISTEMAS INDIVIDUAIS E MICRORREDES Sistemas individuais de geração com fontes intermitentes

Instalação dos SFDs em Mutirão

Colocação de telhas nos abrigos de baterias.

Fixação dos módulos fotovoltaicos no poste.

Montagem dos geradores fotovoltaicos nas estruturas de alumínio.

Comunitários levantando um poste com gerador fotovoltaico.

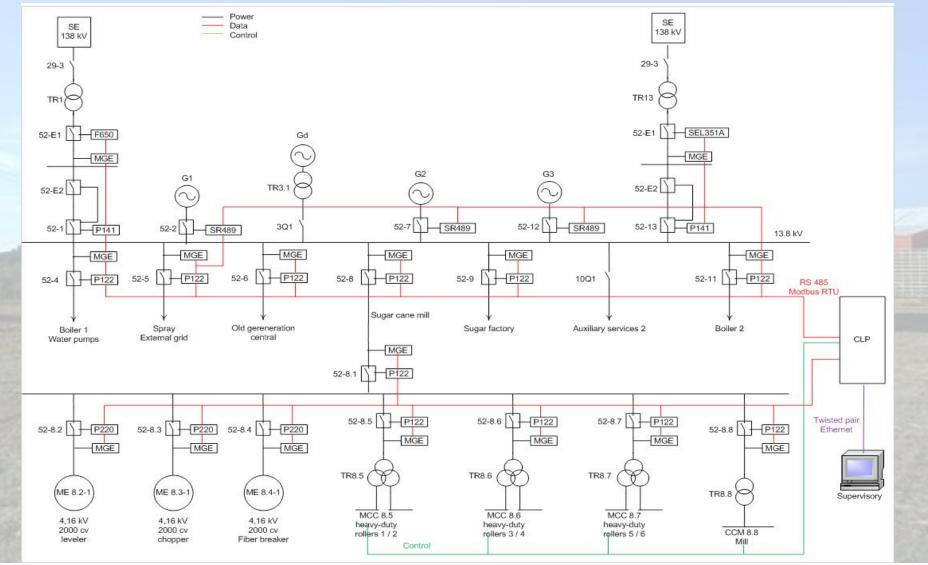
Ilha da Ferradura

6 fishermen homes

1 X 70 Wp Photovoltaic panel (solar incidence: 4 a 6kWh/m2)

1 X 150 Ah, 12V storage system (lead-acid battery)

1 X quasi-sinusoidal 140 W, 110 Vac inverter


1 X charge controller

Microsystems Modelling

The Sugar/Ethanol Microsystem model

Conclusions

- Research and development opportunities for:
 - Islanded distributed generation operation
 - Isolated Micro and Mini systems
 - Individual Electricity Generation Systems with Intermittent Sources
- on:
 - Legal Regulation
 - Micro and mini systems modelling
 - Microsystems planning and projects
 - Power quality

Thank you!

dionizio@dee.feis.unesp.br

Acknowledgements:

Fundação para o Desenvolvimento da UNESP

Foundation for UNESP Development

São Paulo Research Foundation