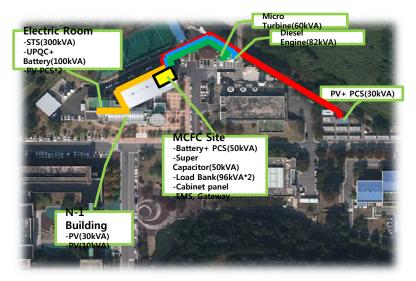
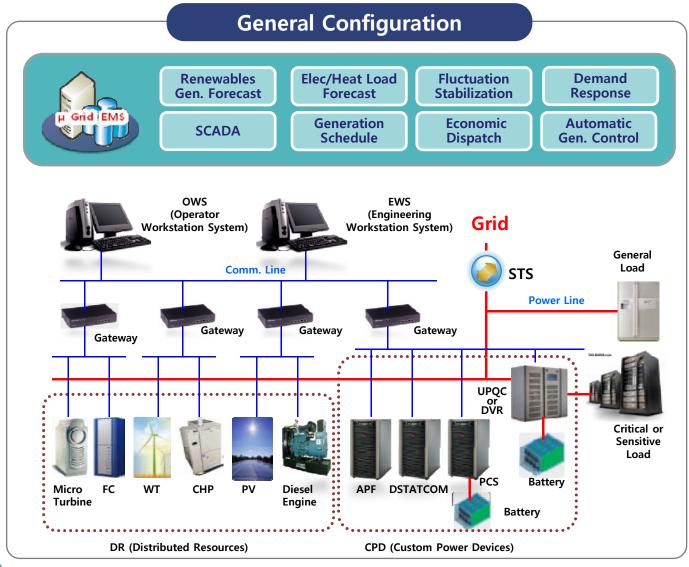
Development and Demonstrations of Microgrid Energy Management Solutions in Korea



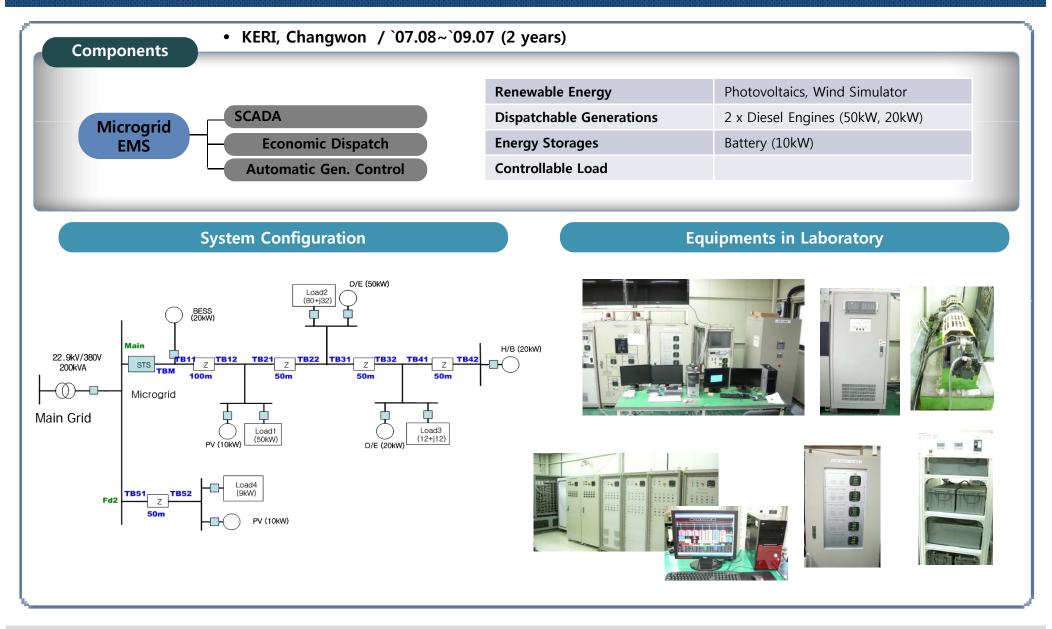
Y.H. Shin, J.M. Sohn, T. K. Kim, J. S. Shim Smart Grid Laboratory

Contents



Case Study : LSIS EMS Solutions

I. Microgrid EMS Solution in Korea
II. Microgrid Project - 1st Phase
III. Microgrid Project - 2nd Phase
IV. Smart Renewable Project

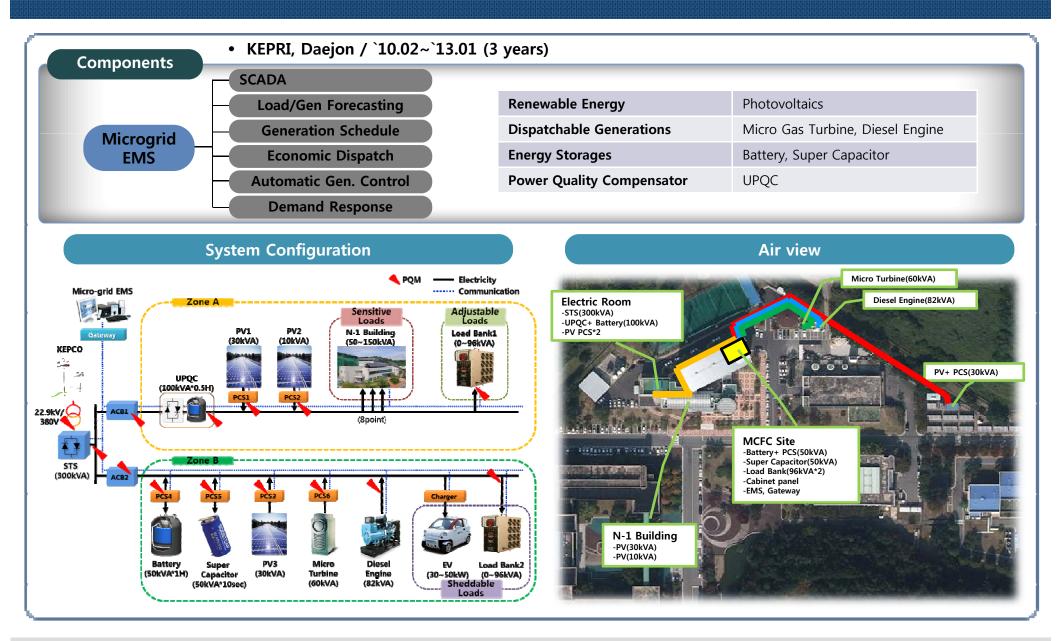

Microgrid EMS(Energy Management System) Solution in Korea

	Test-beds							
Micro	grid Project – 1 st Phase							
Period	`07.08~`09.07							
Location	KERI (Changwon, Korea)							
Functions	SCADA, AGC							
Microgrid F	Project – 2 nd Phase (On-Grid)							
Period	`10.02~`13.01							
Location	KEPRI (Daejon, Korea)							
Functions	On-Grid (Full Functions)							
Microgrid Project – 2 nd Phase (Off-Grid)								
Period	`10.02~`13.01							
Location	Mara-island, Korea							
Functions	Off-Grid(Stabilization, Gen Schedule)							
Sma	rt Renewable Project							
Period	`09.12~`13.05							
Location	Cheju-island, Korea							
Functions	On-Grid(Stabilization, BESS Schedule, Electricity Transaction for Market)							
TUTCIONS								

Overview

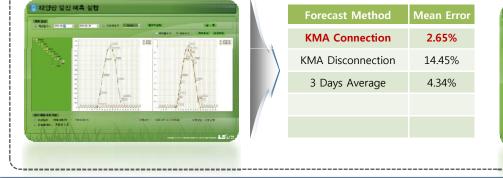
Microgrid Project, 1st Phase

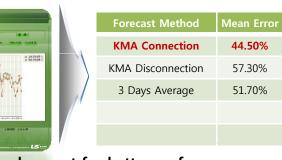
Off-grid transition Test


Off-grid transition test

- AGC Mode: Constant Tieline Flow Control & Constant Frequency Control
- Set Flow: within 5% of full load
- Control Unit: 2 x Diesel Engines

Load Forecasting


Electric Load Forecasting Results


• TSELF method has lowest mean error.

• Heat Load Forecasting Results

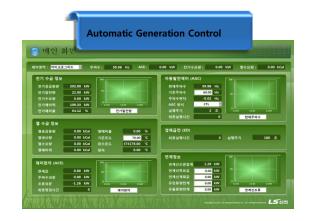
• TSELF method has lowest mean error.

Instrumentation Forecasting • PV Generation Forecasting Results • KMA Connection Method has lowest mean error. • KMA Connection Method has lowest mean error.		Forecast Method Moving Average Exponential Smoothing Regression Analysis Trend Method TSELF	Mean Error 1.57% 1.71% 1.43% 1.88% 0.87%	C dt ph dig Add	Forecast Method Moving Average Exponential Smoothing Regression Analysis Trend Method	Mean Error 28.75% 25.87% 22.26% 31.18%
	Generation Forecasting PV Generation Forecasting 	g Results		Wind Generation Foreca	•	15.25%

Under Further Development for better performance

Functions : Schedule, Economic Dispatch, Automatic Generation Control

General Setting


- Operate run and stop
- Input and change data about generation output characteristic

Special setting for each function

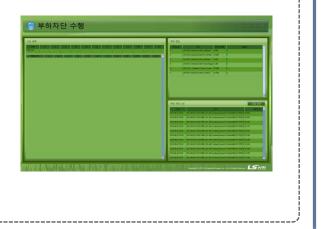
		1 A 22 M 2						
	त्री शे रहन		_				desiti ili	
1: IPO	7 N 26296	파수: 59.9842	HE ACE:	0.0000 MW	전기수요량 :	0.0000 MW	월수요왕 :	(#) K
	획 최적화 옵션				전계획 자동실행			
	와 허용시간		300.0000		자동실행 실행주기(#)	09시 002	30
	하 수행오자	-	0.0001		자동실행 예약시간		09시 00분	00.8
	물랑 반영							
	조건(삼한/하한/고정)	017			전계획 수동실행			
	역 반영				수품실행 실행상태		STOP	
	전 정보 반영	OFF			수통실행 문식 Case		THE STATE	-
		OFF			1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	_		
		017						_
		011		1	적화 수행 시간			
	옆 비례상수		0.0001		최적화 실행결과		-468	
		0#			최적화 시작시간	2011	1:5 0781 2011 09-1 051r	2011
					최적화 중료시간		111 0781 2021 0941 051	

Economic Dispatch									
) 설비	(경제	100.221	1842 Hz ACE	= 0.0000 MW	전기수요량	0.0000 MW	9499	[#] Kc	
	-	848284	820HP	21992	WHERE		2748.	24028	
(19)28+2	0.0000	0.0000	00000	0,0000	0.0000	00000	0.0000	0.0000	
	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
101121-01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
98	열명산비용	열생산비용효과	열성산비용(명공)	중생산비용	· · · · · · · · · · · · · · · · · · · ·	848 8 22	·····································	발전기율력	
				0.0000		0.0000	0.0000		
	2 348								
11/11/2014	0.0000	TRACE OF ALL PROPERTY OF		A COLUMN TO S		12000			
	0.0000							LS &	

Functions : Demand Response

Comparison to tariff

- Select one load source and multi tariff
- Compare total cost each tariff



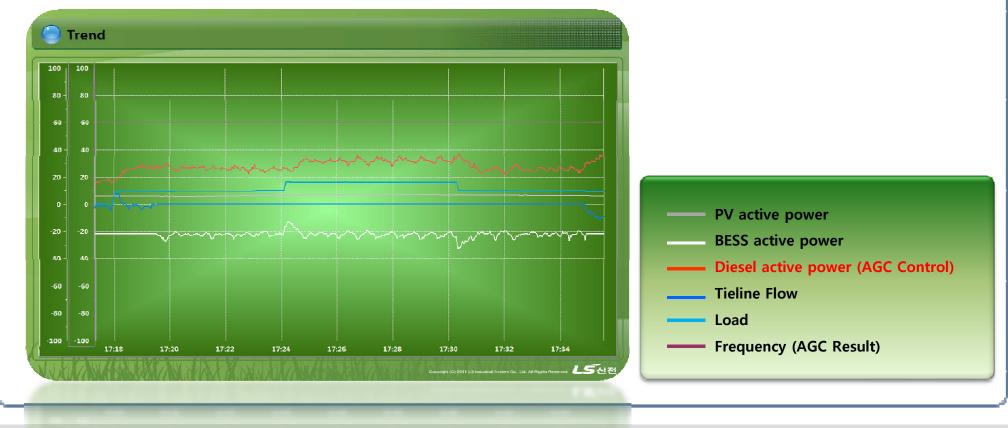
Load Shedding

- Decide to order of priority for load shedding in advance
- Set load shedding reference curve
- Monitor real time load
- Over the reference amount, load will be shedded

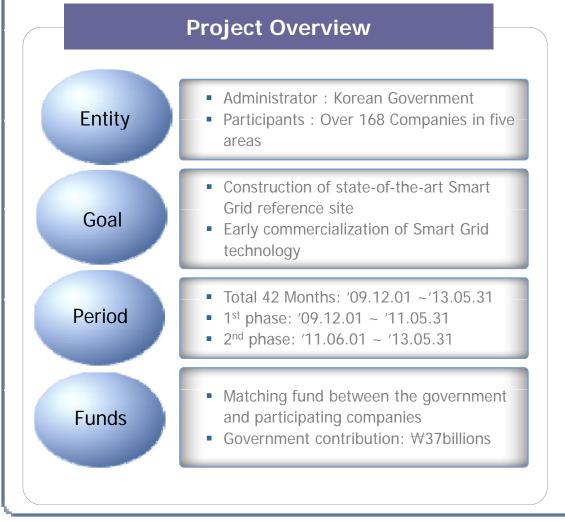
On-Grid Tieline Flow Control Test

Grid connected test

- AGC Mode: Constant Tieline Flow Control
- Set Flow: 0kW
- Control Unit: Diesel Engine
- Change to active power of BESS



Off-Grid Stand-alone Frequency Control Test

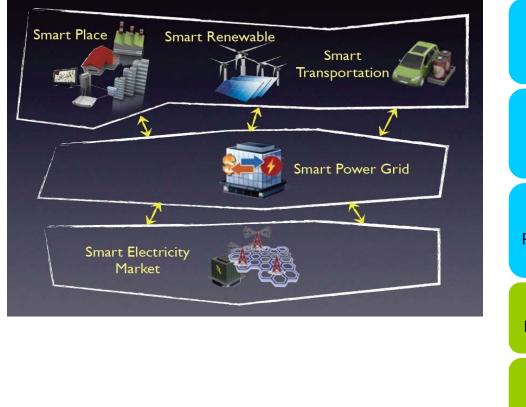

Stand alone test

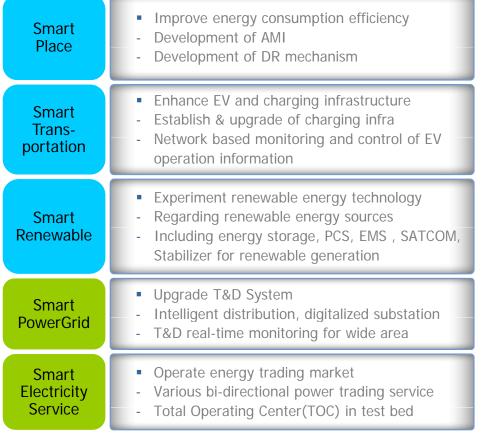
- AGC Mode: Constant Frequency Control
- Set Frequency: 60Hz
- Control Unit: Diesel Engine
- Change to active load of dispatchable load

The most noticeable plan in South Korea's smart grid project is the construction of a Smart Grid Test-bed on Jeju Island on 2009.

Jeju Test Bed

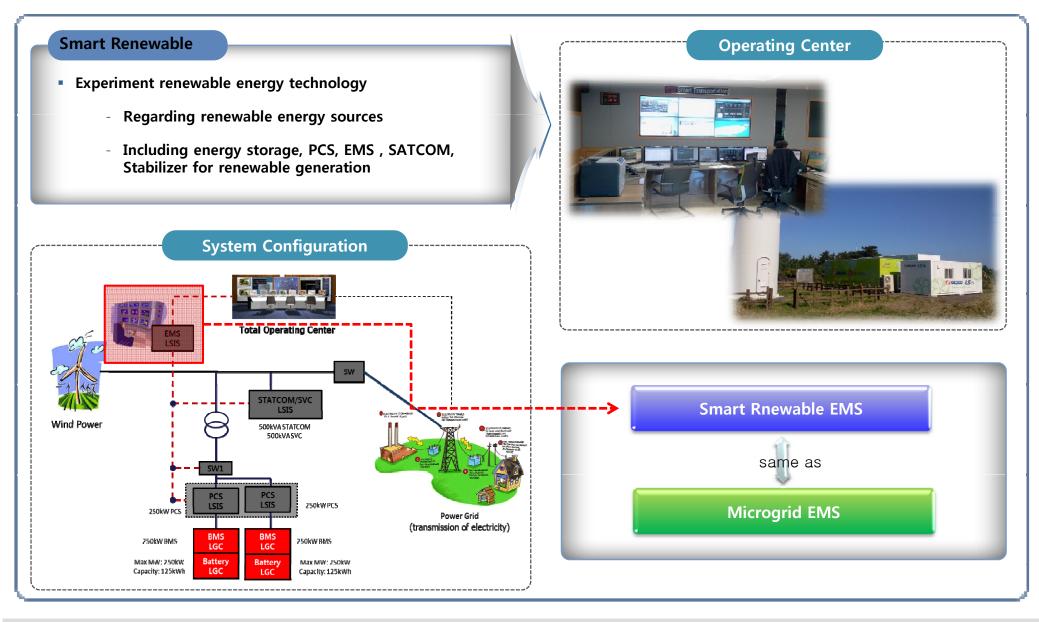
Location & Size


- Location : Gujwaup, Jeju Island
- Size : Total Number of Test Bed households about 3000
- D/L : 2 Substations and 4 Distribution lines
- Note : Utilizes existing wind farm for the Test Bed Project



Smart Place, Transportation, Renewable, PowerGird, and Electricity Service
 LSIS is leading and participating in all areas

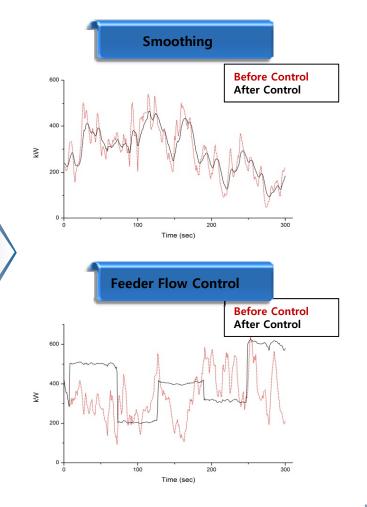
Test Bed Areas


Key Tasks in each area

Overview

BESS Schedule

- Automatic system
- Optimize battery charging/discharging schedule using wind power and electricity price forecasting information
- Generate bidding data combining wind power and battery schedule



Smoothing & FFC(Feeder Flow Control) Test

PCS Control

- Operate mode: smoothing, unit power control, feed flow control
- Stop if battery SOC is over than 95% or under than 5%
- FFC is a powerful function for power stabilization

