

Kiichiro Tsuji Osaka University

Analysis on energy systems in urban area

Search for "optimal " systems: environmentally compatible energy efficient infrastructure

JSPS research project: 1997-2001 Handai Frontier Research Center research project: 2002-2004

Energy system optimization for specific area: Concepts of modeling

Facilities represented by floor space: Office buildings Hotels, Stores Restaurants Hospitals Detached Houses Apartments

Energy systems represented by discrete options

Area purchases electricity, city gas and kerosene

Piping network (Simplified)Piping network (Detailed)

Areas with district heating and cooling System

Areas with individual energy systems

Energy system options

(a) Residential Houses

Symbols	Components
CNV	Air-conditioner + Stove + Gas boiler
SLR	CNV + Solar generation system + Solar-type water heater
ELE	Air-conditioner +Electric water heater + Electric cooking appliance
DHC	DHC(District Heating & Cooling)

(b) Business & Commercial Buildings

DHC plant configuration and constraints

Multiple objective linear optimization model

Evaluation Indices:

- •Cost
- Primary Energy Consumption
- CO₂ Emission

Variables:

- Share of energy system options
- Capacity and operational strategy for DHC co-generation plant

Developed by Sugihara & Tsuji

Reference Scenario

Office	ARH(24.4%)
	ER(75.64%)
Hotel	ER
Hospital	ER
Retail Store	ER
Restaurant	ER
Detached House	CNV
Apartment	CNV

Input data: Area for study

Detached house

Apartment House

1,250.973

879,753

Input data: End-use energy demand for 12 representative days

Input data: End-use energy demand for 12 representative days

Tradeoff curves: Cost vs. CO₂ emission

Distributed generation will increase as CO₂ constraint get more severe

Tradeoff curves: Cost vs. Primary energy consumption Share of energy system options 100% DHC -60ΠΗΡ 80% -50 FC2 Cost Reduction Rate [%] **G** FC 1 Share 60% -40GE2 -30 **G** G E 1 40% 🗖 E R -20 20% 🗖 A R H -100% 0 8 12 16 20 24 28 0 4 Reduction rate of primary energy [%] 10 20 b) Business & Commercial Sector 30 20 10 -10-20-30 0 Reduction Rate of Primary Energy Consumption [%] 100%

Distributed generation will increase as primary energy constraint get more severe

a) Tradeoff Curve

Needs for new electric energy delivery system

- [1] Penetration of Distributed Photovoltaic Generation Wind
 - Micro Cogeneration

- Reverse power problem
 Frequency fluctuation
 Voltage rise in distribution line
 Protection problem in distribution
 system
- [2] Deregulation of Electricity Market
 - Diversification of Customer Needs
 - - Unbundled power quality
 - service
 - uninterruptible power lower-price power

Quality of Power

Definitions of Events by IEEE Std.1159-1995

Voltage Stability

- Under-voltage & Over-voltage
- Voltage Sag
- Voltage Swell
- Phase Shift
- Flicker
- Frequency

Continuity of Supplying Power

- Momentary Interruption
- Temporary Interruption
- Sustained Interruption

Voltage Waveform

- Transient
- Three Phase Voltage
 unbalance
 - Harmonic Voltage, Current
 - Notch

Customer Needs

Does every customer request very high quality in power supply? What if a customer can choose power of different quality with different

⇒Power system configuration that allows a customer to choose. ⇒Can be realized by the use of power electronics

Concept of FRIENDS

Prof.Hasegawa, Prof.Nara 1994

FRIENDS

By use of QCC(Quality Control Center)

[1] Several qualities of power are supplied to customers.

[2] Unbalance and harmonics current from loads are compensated.

[3] Power fluctuation from distributed generators (DG) and loads is compensated, and reverse power from DGs is absorbed.

(Flexible Reliable and Intelligent Electrical eNergy Delivery System)

Conventional Radial Distribution Network

FRIENDS Network

Example of QCC: *Power flow in normal operation*

Levels of Power Quality in 3phase4wire System

Events	Norm al	H igh	Prem ium
Voltage Sags	×	\bigcirc	\bigcirc
Voltage Swells	\times	\bigcirc	\bigcirc
Phase shift	×	\times	\bigcirc
Instantaneous 0 utage	\times	\times	\bigcirc
Short t i m e outage	×	\times	\bigcirc
Long t i m e outage	\times	\times	\times
Unbalance in 3 phase	\bigtriangleup	\bigtriangleup	\bigtriangleup
Flicker	\bigcirc	\bigcirc	\bigcirc
Unbalanced Current	\bigcirc	\bigcirc	\bigcirc
Harmonic Current	\bigcirc	\bigcirc	\bigcirc

Power Flows in UPS Operation

Levels of Power Quality for AC type QCC

Events	Normal	High	Premium
Voltage Sags	\times	\bigcirc	\bigcirc
Voltage Swells	\times	\bigcirc	\bigcirc
Phase shift	×	\bigcirc	\bigcirc
Instantaneous Outag	e ×	Х	\bigcirc
Short time outage	×	Х	\bigcirc
Long time outage	×	×	\bigcirc
Unbalance in 3 phas	e imes	\bigcirc	\bigcirc
Flicker	\bigcirc	\bigcirc	\bigcirc
Unbalanced Current	\bigcirc	\bigcirc	\bigcirc
Harmonic Current	\bigcirc	\bigcirc	\bigcirc

Concept of Power Exchange among QCCs

QCC: Interface with Power Network

 QCC: Quality Control Center
 CGS:Cogeneration System
 DHC:District Heating and Coc

 ESS: Energy Storage System
 HP: Heat Pump
 SL: Solar energy Utilization System

 ---- Electric Power
 City Gas
 —

 Thermal Energy

Optimization of QCC Allocation

Minimization of Total Cost of Distribution Lines

$$F(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) = (1/2) \int C_i \left(\min \| \|\mathbf{x} - \mathbf{x}_i \|^2 \right) P(\mathbf{x}) d\mathbf{x}$$
$$= (1/2) \sum_{i=1}^n \int_{v_i} C_i \| \|\mathbf{x} - \mathbf{x}_i \|^2 P(\mathbf{x}) d\mathbf{x}$$

where, C_i : (cost of unit power transmission)/(capacity of QCC *i*) x: location of a load point, (x^1, x^2) x_i : location of QCC *i*, (x_i^1, x_i^2) P(x): specific load at load point x

Optimization of Network

[Objective function]

$$\begin{array}{ll} \text{Min.} & \alpha \Biggl(\sum_{n=1}^{ND} (aX_n + bYN_n) + \sum_{m=1}^{BR} c_m YL_m \Biggr) + \beta \sum_{t=1}^{T} Oloss^t \\ & \text{Distributed} & \text{Transmission} \\ & \text{generation cost} & \text{line cost} \end{array} \quad \begin{array}{l} \text{Transmission} \\ \end{array} \quad \begin{array}{l} \text{Transmission} \\ \text{Transmission} \\ \end{array} \quad \begin{array}{l} \text{Transmission} \\ \text{Transmission} \\ \end{array} \end{array}$$

[Constraints] (DG's maximum capacity)

$$X_n \in \left\{x^{1_n}, x^{2_n}, \dots, x^{i_n}, \dots, x^{L_n}\right\} (n = 1, \dots, ND)$$

(Expected power interruption cost)

$$\sum_{t=1}^{T} \sum_{r=1}^{FLT} \frac{1}{T} p_r BLCost \quad {}^{rt} \leq \varepsilon$$

(Line power flow

$$\operatorname{cap}_{\underline{m}} \operatorname{ty}_{m} P_{m}^{rt} \leq \overline{P_{m}} (m = 1, \cdots, BR) (r = 1, \cdots, FLT) (t = 1, \cdots, T)$$

Possible Image of FRIENDS in the Context of Micro Grid

Concluding Remarks

- 1) Energy system optimization for specific area under the CO₂ reduction constraint results in introducing various distributed power generation
- 2) Power distribution network must be redesigned: New concepts are necessary
- 3) FRIENDS is one of the possible forms of micro grid Current status of research:

Various forms and circuits of QCC have been proposed
 Some of the types of QCC have been constructed and tested in lab
 Customized or Unbundled Power Quality Services can be realized
 Power exchange between QCCs have been tested in lab

Thank you for your attention